Example 1 represents 5-segment statically indeterminate beam with left overhang. The beam is loaded by couple, linearly distributed load and concentrated force.
|
Length of the beam L: 5 |
Number of pin supports (except left one): 3 |
Number of couples (external moments): 1 |
Number of concentrated loads: 1 |
Number of distributed loads: 1 |
l1 - coordinate of reaction (pin support) 0<l1≤L: 2 |
M1 - value of the couple # 1 of 1: -1 |
a1 - coordinate of this couple: 2 |
F1 - value of the concentrated load # 1 of 1: 1 |
b1 - coordinate of this concentrated load: 1 |
qL1 - left value of the lineary distributed load # 1 of 1: 1 |
qR1 - right value of the lineary distributed load # 1 of 1: 0 |
c1 - left coordinate of this distributed load: 4 |
d1 - right coordinate of this distributed load: 5 |
l2 - coordinate of reaction (pin support) 0<l2≤L: 3 |
l3 - coordinate of reaction (pin support) 0<l3≤L: 4 |
Maximum shear force V is 1.2463768 at x=2.0
Maximum bending moment M is -0.9637681 at x=2.0
Maximum deflection EIv is -0.175729 at x=1.01
Calculation of reactions solving system of equations.
Geometrical equations (beam deflections corresponding to pin supports are equal to 0):
EIv(l1)=EIθ0l1+R0l13/6-F1(l1-b1)3/6=0
EIv(l2)=EIθ0l2+M1(l2-a1)2/2+R0l23/6+R1(l2-l1)3/6-F1(l2-b1)3/6=0
EIv(l3)=EIθ0l3+M1(l3-a1)2/2+R0l33/6+R1(l3-l1)3/6+R2(l3-l2)3/6-F1(l3-b1)3/6=0
The equation of moment equilibrium about right end support:
M0+M1+R0L+R1(l3-l1)+R2(l3-l2)-F1(l3-b1)+qL1(c1-d1)(l3-(c1+d1)/2)+(qR1-qL1)(d1-c1)/2(l3-(c1+2(d1-c1)/3))=0
Finally we have system of 4 equations:
2.0EIθ0+1.3333334R0+0.0R1+0.0R2=0.16666667
3.0EIθ0+4.5R0+0.16666667R1+0.0R2=1.8333334
4.0EIθ0+10.666667R0+1.3333334R1+0.16666667R2=6.5
0.0EIθ0+4.0R0+2.0R1+1.0R2=3.8333333
The equation of beam equilibrium with respect to vertical axis serves for calculation of vertical reaction applied to the right support of the beam:
R3=-R0+F1-R1-R2+qL1(d1-c1)+(qR1-qL1)(d1-c1)/2
The solution is:
R0=0.51811594; R1=1.7282609; R2=-1.6956521; R3=0.9492754; EIθ0=-0.2620773; The beam has 5 segments.
Segment #1 (0.0≤x≤1.0).
Shear force:
V=R0=
0.51811594=
0.51811594
Bending moment:
M=+R0x=
+0.51811594x=
+0.51811594x
Deflection:
EIv=EIθ0x+R0x3/6=
-0.2620773x+0.51811594x3/6=
-0.2620773x+0.086352654x3
At x=0.0 V=0.51811594; M=2.5905798E-9; EIv=-1.3103865E-9;
At x=1.0 V=0.51811594; M=0.51811594; EIv=-0.17572464;
Segment #2 (1.0≤x≤2.0).
Shear force:
V=R0-F1=
0.51811594-1.0=
-0.48188406
Bending moment:
M=+R0x-F1(x-b1)=
+0.51811594x-1.0(x-1.0)=
+0.51811594x-1.0(x-1.0)
Deflection:
EIv=EIθ0x+R0x3/6-F1(x-b1)3/6=
-0.2620773x+0.51811594x3/6-1.0(x-1.0)3/6=
-0.2620773x+0.086352654x3-0.16666667(x-1.0)3
At x=1.0 V=-0.48188406; M=0.51811594; EIv=-0.17572464;
At x=2.0 V=-0.48188406; M=0.036231887; EIv=-1.3707736E-9;
There is mimimum deflection -0.175729 on this segment at x=1.01
Segment #3 (2.0≤x≤3.0).
Shear force:
V=R0+R1-F1=
0.51811594+1.7282609-1.0=
1.2463768
Bending moment:
M=M1+R0x+R1(x-l1)-F1(x-b1)=
-1.0+0.51811594x+1.7282609(x-2.0)-1.0(x-1.0)=
-1.0+0.51811594x+1.7282609(x-2.0)-1.0(x-1.0)
Deflection:
EIv=EIθ0x+M1(x-a1)2/2+R0x3/6+R1(x-l1)3/6-F1(x-b1)3/6=
-0.2620773x-1.0(x-2.0)2/2+0.51811594x3/6+1.7282609(x-2.0)3/6-1.0(x-1.0)3/6=
-0.2620773x-0.5(x-2.0)2+0.086352654x3+1.7282609(x-2.0)3/6-0.16666667(x-1.0)3
At x=2.0 V=1.2463768; M=-0.9637681; EIv=1.3707725E-9;
At x=3.0 V=1.2463768; M=0.2826087; EIv=3.3212533E-10;
There is maximum deflection 0.045993216 on this segment at x=2.38
Segment #4 (3.0≤x≤4.0).
Shear force:
V=R0+R1+R2-F1=
0.51811594+1.7282609-1.6956521-1.0=
-0.44927537
Bending moment:
M=M1+R0x+R1(x-l1)+R2(x-l2)-F1(x-b1)=
-1.0+0.51811594x+1.7282609(x-2.0)-1.6956521(x-3.0)-1.0(x-1.0)=
-1.0+0.51811594x+1.7282609(x-2.0)-1.6956521(x-3.0)-1.0(x-1.0)
Deflection:
EIv=EIθ0x+M1(x-a1)2/2+R0x3/6+R1(x-l1)3/6+R2(x-l2)3/6-F1(x-b1)3/6=
-0.2620773x-1.0(x-2.0)2/2+0.51811594x3/6+1.7282609(x-2.0)3/6-1.6956521(x-3.0)3/6-1.0(x-1.0)3/6=
-0.2620773x-0.5(x-2.0)2+0.086352654x3+1.7282609(x-2.0)3/6-1.6956521(x-3.0)3/6-0.16666667(x-1.0)3
At x=3.0 V=-0.44927537; M=0.2826087; EIv=-3.3212583E-10;
At x=4.0 V=-0.44927537; M=-0.16666667; EIv=4.226941E-11;
There is mimimum deflection -0.009243167 on this segment at x=3.31
There is maximum deflection 2.2373188E-4 on this segment at x=3.95
Segment #5 (4.0≤x≤5.0).
Shear force:
V=R0+R1+R2+R3-F1-qL1(x-c1)-(qR1-qL1)(x-c1)2/(d1-c1)/2=
0.51811594+1.7282609-1.6956521+0.9492754-1.0-1.0(x-4.0)-(0.0-1.0)(x-4.0)2/(5.0-4.0)/2=
0.5-1.0(x-4.0)+0.5(x-4.0)2
Bending moment:
M=M1+R0x+R1(x-l1)+R2(x-l2)+R3(x-l3)-F1(x-b1)-qL1(x-c1)2/2-(qR1-qL1)(x-c1)3/(d1-c1)/6=
-1.0+0.51811594x+1.7282609(x-2.0)-1.6956521(x-3.0)+0.9492754(x-4.0)-1.0(x-1.0)-1.0(x-4.0)2/2-(0.0-1.0)(x-4.0)3/(5.0-4.0)/6=
-1.0+0.51811594x+1.7282609(x-2.0)-1.6956521(x-3.0)+0.9492754(x-4.0)-1.0(x-1.0)-0.5(x-4.0)2+0.16666667(x-4.0)3
Deflection:
EIv=EIθ0x+M1(x-a1)2/2+R0x3/6+R1(x-l1)3/6+R2(x-l2)3/6+R3(x-l3)3/6-F1(x-b1)3/6-qL1(x-c1)4/24-(qR1-qL1)(x-c1)5/(d1-c1)/120=
-0.2620773x-1.0(x-2.0)2/2+0.51811594x3/6+1.7282609(x-2.0)3/6-1.6956521(x-3.0)3/6+0.9492754(x-4.0)3/6-1.0(x-1.0)3/6-1.0(x-4.0)4/24-(0.0-1.0)(x-4.0)5/(5.0-4.0)/120=
-0.2620773x-0.5(x-2.0)2+0.086352654x3+1.7282609(x-2.0)3/6-1.6956521(x-3.0)3/6+0.9492754(x-4.0)3/6-0.16666667(x-1.0)3-0.041666668(x-4.0)4+0.008333334(x-4.0)5
At x=4.0 V=0.5; M=-0.16666666; EIv=-4.2272297E-11;
At x=5.0 V=0.0; M=-1.110223E-16; EIv=-0.041787438;
Example 2 represents 3-segment statically indeterminate beam loaded by couple, uniformly distributed load and concentrated force.
|
Length of the beam L: 4 |
Number of pin supports: 2 |
Number of couples (external moments): 1 |
Number of concentrated loads: 1 |
Number of distributed loads: 1 |
l1 - coordinate of reaction (pin support) 0<l1≤L: 2 |
M1 - value of the couple # 1 of 1: -2 |
a1 - coordinate of this couple: 4 |
F1 - value of the concentrated load # 1 of 1: 1 |
b1 - coordinate of this concentrated load: 1 |
qL1 - left value of the lineary distributed load # 1 of 1: 1 |
qR1 - right value of the lineary distributed load # 1 of 1: 1 |
c1 - left coordinate of this distributed load: 2 |
d1 - right coordinate of this distributed load: 4 |
l2 - coordinate of reaction (pin support) 0<l2≤L: 4 |
Maximum shear force V is 2.5357144 at x=2.0
Maximum bending moment M is 2.0 at x=4.0
Maximum deflection EIv is -0.47082222 at x=3.22
Calculation of reactions solving system of equations.
Geometrical equations (beam deflections corresponding to pin supports are equal to 0):
EIv(l1)=M0l12/2+R0l13/6-F1(l1-b1)3/6=0
EIv(l2)=M0l22/2+R0l23/6+R1(l2-l1)3/6-F1(l2-b1)3/6-q1(l2-c1)4/24=0
The equation of moment equilibrium about right end support:
M0+M1+R0L+R1(l2-l1)-F1(l2-b1)+q1(d1-c1)(l2-(c1+d1)/2)=0
Finally we have system of 3 equations:
2.0M0+1.3333334R0+0.0R1=0.33333334
8.0M0+10.666667R0+1.3333334R1=9.666667
1.0M0+4.0R0+2.0R1=10.0
The equation of beam equilibrium with respect to vertical axis serves for calculation of vertical reaction applied to the right support of the beam:
R2=-R0+F1-R1+q1(d1-c1)
The solution is:
R0=0.5714286; R1=3.9642856; R2=-0.53571427; M0=-0.21428572; The beam has 3 segments.
Segment #1 (0.0≤x≤1.0).
Shear force:
V=R0=
0.5714286=
0.5714286
Bending moment:
M=M0+R0x=
-0.21428572+0.5714286x=
-0.21428572+0.5714286x
Deflection:
M0x2/2+R0x3/6=
-0.21428572x2/2+0.5714286x3/6=
-0.21428572x2/2+0.0952381x3
At x=0.0 V=0.5714286; M=-0.21428572; EIv=-1.7142857E-18;
At x=1.0 V=0.5714286; M=0.35714287; EIv=-0.011904762;
There is mimimum deflection -0.020089285 on this segment at x=0.75
Segment #2 (1.0≤x≤2.0).
Shear force:
V=R0-F1=
0.5714286-2.0=
-1.4285715
Bending moment:
M=M0+R0x-F1(x-b1)=
-0.21428572+0.5714286x-2.0(x-1.0)=
-0.21428572+0.5714286x-2.0(x-1.0)
Deflection:
M0x2/2+R0x3/6-F1(x-b1)3/6=
-0.21428572x2/2+0.5714286x3/6-2.0(x-1.0)3/6=
-0.21428572x2/2+0.0952381x3-0.33333334(x-1.0)3
At x=1.0 V=-1.4285715; M=0.35714287; EIv=-0.011904761;
At x=2.0 V=-1.4285715; M=-1.0714285; EIv=1.142857E-9;
There is maximum deflection 0.04458333 on this segment at x=1.65
Segment #3 (2.0≤x≤4.0).
Shear force:
V=R0+R1-F1-q1(x-c1)=
0.5714286+3.9642856-2.0-1.0(x-2.0)=
2.5357144-1.0(x-2.0)
Bending moment:
M=M0+R0x+R1(x-l1)-F1(x-b1)-q1(x-c1)2/2=
-0.21428572+0.5714286x+3.9642856(x-2.0)-2.0(x-1.0)-1.0(x-2.0)2/2=
-0.21428572+0.5714286x+3.9642856(x-2.0)-2.0(x-1.0)-0.5(x-2.0)2
Deflection:
M0x2/2+R0x3/6+R1(x-l1)3/6-F1(x-b1)3/6-q1(x-c1)4/24=
-0.21428572x2/2+0.5714286x3/6+3.9642856(x-2.0)3/6-2.0(x-1.0)3/6-1.0(x-2.0)4/24=
-0.21428572x2/2+0.0952381x3+3.9642856(x-2.0)3/6-0.33333334(x-1.0)3-0.041666668(x-2.0)4
At x=2.0 V=2.5357144; M=-1.0714285; EIv=-1.1428573E-9;
At x=4.0 V=0.53571427; M=2.0; EIv=-5.2380953E-9;
There is mimimum deflection -0.47082222 on this segment at x=3.22
Example 3 represents 3-segment statically indeterminate beam under linearly distributed and concentrated load.
|
Length of the beam L: 3 |
Number of pin supports: 1 |
Number of couples (external moments): |
Number of concentrated loads: 1 |
Number of distributed loads: 1 |
l1 - coordinate of reaction (pin support) 0<l1≤L: 2 |
F1 - value of the concentrated load # 1 of 1: 4 |
b1 - coordinate of this concentrated load: 1 |
qL1 - left value of the lineary distributed load # 1 of 1: 1 |
qR1 - right value of the lineary distributed load # 1 of 1: 2 |
c1 - left coordinate of this distributed load: 2 |
d1 - right coordinate of this distributed load: 3 |
Maximum shear force V is 2.2208333 at x=0.0
Maximum bending moment M is -1.1472222 at x=0.0
Maximum deflection EIv is -0.20410453 at x=1.04
Calculation of reactions solving system of equations.
Geometrical equations (beam deflections corresponding to pin supports are equal to 0):
EIv(l1)=M0l12/2+R0l13/6-F1(l1-b1)3/6=0
Two conditions for the right clamped end of the beam:
EIv(L)=M0L2/2+R0x3/6+R1(L-l1)3/6-F1(L-b1)3/6-qL1(L-c1)4/24-(qR1-qL1)(L-c1)5/(d1-c1)/120=0
EIθ(L)=M0L+R0x2/2+R1(L-l1)2/2-F1(L-b1)2/2-qL1(L-c1)3/6-(qR1-qL1)(L-c1)4/(d1-c1)/24=0
Finally we have system of 3 equations:
2.0M0+1.3333334R0+0.0R1=0.6666667
4.5M0+4.5R0+0.16666667R1=5.383333
3.0M0+4.5R0+0.5R1=8.208333
The equation of moment equilibrium about right end support serves for calculation of moment Mr:
Mr=-M0-R1(L-l1)-R0L+F1(L-b1)-qL1(c1-d1)(L-(c1+d1)/2)-(qR1-qL1)(d1-c1)/2(L-(c1+2(d1-c1)/3))=0
The equation of beam equilibrium with respect to vertical axis serves for calculation of vertical reaction applied to the right support of the beam:
Rr=-R0+F1-R1+qL1(d1-c1)+(qR1-qL1)(d1-c1)/2
The solution is:
R0=2.2208333; R1=3.3125; M0=-1.1472223; Mr=-0.16111112; Rr=-0.033333335; The beam has 3 segments.
Segment #1 (0.0≤x≤1.0).
Shear force:
V=R0=
2.2208333=
2.2208333
Bending moment:
M=M0+R0x=
-1.1472223+2.2208333x=
-1.1472223+2.2208333x
Deflection:
M0x2/2+R0x3/6=
-1.1472223x2/2+2.2208333x3/6=
-1.1472223x2/2+0.37013888x3
At x=0.0 V=2.2208333; M=-1.1472222; EIv=-5.1625E-18;
At x=1.0 V=2.2208333; M=1.0736111; EIv=-0.20347223;
Segment #2 (1.0≤x≤2.0).
Shear force:
V=R0-F1=
2.2208333-4.0=
-1.7791667
Bending moment:
M=M0+R0x-F1(x-b1)=
-1.1472223+2.2208333x-4.0(x-1.0)=
-1.1472223+2.2208333x-4.0(x-1.0)
Deflection:
M0x2/2+R0x3/6-F1(x-b1)3/6=
-1.1472223x2/2+2.2208333x3/6-4.0(x-1.0)3/6=
-1.1472223x2/2+0.37013888x3-0.6666667(x-1.0)3
At x=1.0 V=-1.7791667; M=1.0736111; EIv=-0.20347223;
At x=2.0 V=-1.7791667; M=-0.70555556; EIv=-4.416667E-10;
There is mimimum deflection -0.20410453 on this segment at x=1.04
Segment #3 (2.0≤x≤3.0).
Shear force:
V=R0+R1-F1-qL1(x-c1)-(qR1-qL1)(x-c1)2/(d1-c1)/2=
2.2208333+3.3125-4.0-1.0(x-2.0)-(2.0-1.0)(x-2.0)2/(3.0-2.0)/2=
1.5333333-1.0(x-2.0)-0.5(x-2.0)2
Bending moment:
M=M0+R0x+R1(x-l1)-F1(x-b1)-qL1(x-c1)2/2-(qR1-qL1)(x-c1)3/(d1-c1)/6=
-1.1472223+2.2208333x+3.3125(x-2.0)-4.0(x-1.0)-1.0(x-2.0)2/2-(2.0-1.0)(x-2.0)3/(3.0-2.0)/6=
-1.1472223+2.2208333x+3.3125(x-2.0)-4.0(x-1.0)-0.5(x-2.0)2-0.16666667(x-2.0)3
Deflection:
M0x2/2+R0x3/6+R1(x-l1)3/6-F1(x-b1)3/6-qL1(x-c1)4/24-(qR1-qL1)(x-c1)5/(d1-c1)/120=
-1.1472223x2/2+2.2208333x3/6+3.3125(x-2.0)3/6-4.0(x-1.0)3/6-1.0(x-2.0)4/24-(2.0-1.0)(x-2.0)5/(3.0-2.0)/120=
-1.1472223x2/2+0.37013888x3+3.3125(x-2.0)3/6-0.6666667(x-1.0)3-0.041666668(x-2.0)4-0.008333334(x-2.0)5
At x=2.0 V=1.5333333; M=-0.70555556; EIv=4.4166715E-10;
At x=3.0 V=0.03333334; M=0.16111112; EIv=-6.661338E-16;
There is maximum deflection 0.018958917 on this segment at x=2.3