Example
Input:
Length of plate in x-axis direction a: 1
Length of plate in y-axis direction b: 0.5
Elasticity modulus in x-axis direction Ex: 10000
Elasticity modulus in y-axis direction Ey: 1000
Poisson's ratio of the material νyx: 0.03
Shear modulus of the material G: 385
Plate thickness h: 0.01
Uniform load q: 0.00278
Coordinate x of point A of load area x0: 0.205
Coordinate y of point A of load area y0: 0.105
Length of load area in x-axis direction lx: 0.102
Length of load area in y-axis direction ly: 0.052
Output:

Maximum deflection is 2.4967213E-4 at x=0.3375 and y=0.18125
Deflection in the middle of the plate is 2.0813583E-4
Approximation formula for deflection function:
w(x,y)=+2.1852352E-4sin(πx/1.0)sin(πy/0.5)+3.3722135E-5sin(πx/1.0)sin(2πy/0.5)+4.4687727E-6sin(πx/1.0)sin(3πy/0.5)+4.916904E-5sin(2πx/1.0)sin(πy/0.5)+2.5098072E-5sin(2πx/1.0)sin(2πy/0.5)+4.801689E-6sin(2πx/1.0)sin(3πy/0.5)+7.46237E-6sin(3πx/1.0)sin(πy/0.5)+6.586061E-6sin(3πx/1.0)sin(2πy/0.5)+1.974576E-6sin(3πx/1.0)sin(3πy/0.5)-1.3244204E-6sin(5πx/1.0)sin(2πy/0.5)


Stress analysis

Critical points:

Maximum normal stress in x-axis direction is 0.35657236 at x=0.25 and y=0.1375
Corrresponding stresses are: σx=0.35657236, σy=0.11787214, τxy=0.0065388135

Maximum normal stress in y-axis direction is 0.12005951 at x=0.2625 and y=0.13125
Corrresponding stresses are: σx=0.35274145, σy=0.12005951, τxy=0.00658418

Maximum shear stress in x-axis or y-axis direction is 0.04187217 at x=0.0 and y=0.0
Corrresponding stresses are: σx=0.0, σy=0.0, τxy=0.04187217

Maximum principal stress is 0.35675135 at x=0.25 and y=0.1375
Corrresponding stresses are: σx=0.35657236, σy=0.11787214, τxy=0.0065388135

Maximum shear stress is 0.12066183 at x=0.25 and y=0.15
Corrresponding stresses are: σx=0.3516384, σy=0.11056244, τxy=0.005465567

Maximum von Mises stress is 0.3148587 at x=0.25 and y=0.1375
Corrresponding stresses are: σx=0.35657236, σy=0.11787214, τxy=0.0065388135